941 research outputs found

    Laser scattering by density fluctuations of ultra-cold atoms in a magneto-optical trap

    Full text link
    We study the spectrum of density fluctuations in the ultra-cold gas of neutral atoms, confined in a magneto-optical trap. We determine the corresponding amplitude and spectra of laser light scattered by this medium. We derive an expression for the dynamical structure function, by using a test particle method. We propose to use the collective laser scattering as a diagnostic method for the microscopic properties of the ultra-cold matter. This will also allow us to check on the atomic correlations which are mediated by the collective mean field inside the gas.Comment: J. Phys. B (in press

    A Self-Consistent Marginally Stable State for Parallel Ion Cyclotron Waves

    Full text link
    We derive an equation whose solutions describe self-consistent states of marginal stability for a proton-electron plasma interacting with parallel-propagating ion cyclotron waves. Ion cyclotron waves propagating through this marginally stable plasma will neither grow nor damp. The dispersion relation of these waves, {\omega} (k), smoothly rises from the usual MHD behavior at small |k| to reach {\omega} = {\Omega}p as k \rightarrow \pm\infty. The proton distribution function has constant phase-space density along the characteristic resonant surfaces defined by this dispersion relation. Our equation contains a free function describing the variation of the proton phase-space density across these surfaces. Taking this free function to be a simple "box function", we obtain specific solutions of the marginally stable state for a range of proton parallel betas. The phase speeds of these waves are larger than those given by the cold plasma dispersion relation, and the characteristic surfaces are more sharply peaked in the v\bot direction. The threshold anisotropy for generation of ion cyclotron waves is also larger than that given by estimates which assume bi-Maxwellian proton distributions.Comment: in press in Physics of Plasma

    Dynamic Light Scattering From Colloidal Gels

    Get PDF
    We present a brief, preliminary account of the interpretation of dynamic light scattering from fractal colloidal gels. For small scattering angles, and for high initial colloid particle volume fractions, the correlation functions exhibit arrested decay, reflecting the non-ergodic nature of these systems and allowing us to directly determine the elastic modulus of the gels. For smaller initial volume fractions, the correlation functions decay completely. In all cases, the initial decay is not exponential, but is instead described by a stretched exponential. We summarize the principles of a model that accounts for these data and discuss the scaling behavior of the measured parameters

    RISK-RETURN ANALYSIS OF INCORPORATING ANNUAL LEGUMES AND LAMB GRAZING WITH DRYLAND CROP ROTATIONS

    Get PDF
    Profitability and risk, 1988-2001, are examined for lamb-grazed field pea as a fallow alternative with wheat, or an extended wheat-sunflower-millet rotation. Switching from conventional wheat-fallow to an extended rotation with grazed-peas increases profitability (2.3% to 7.3%), and reduces risk (below 0% target in only 2 versus 7 of 14 years).Crop Production/Industries,

    Attracted Diffusion-Limited Aggregation

    Full text link
    In this paper, we present results of extensive Monte Carlo simulations of diffusion-limited aggregation (DLA) with a seed placed on an attractive plane as a simple model in connection with the electrical double layers. We compute the fractal dimension of the aggregated patterns as a function of the attraction strength \alpha. For the patterns grown in both two and three dimensions, the fractal dimension shows a significant dependence on the attraction strength for small values of \alpha, and approaches to that of the ordinary two-dimensional (2D) DLA in the limit of large \alpha. For non-attracting case with \alpha=1, our results in three dimensions reproduce the patterns of 3D ordinary DLA, while in two dimensions our model leads to formation of a compact cluster with dimension two. For intermediate \alpha, the 3D clusters have quasi-2D structure with a fractal dimension very close to that of the ordinary 2D-DLA. This allows one to control morphology of a growing cluster by tuning a single external parameter \alpha.Comment: 6 pages, 6 figures, to appear in Phys. Rev. E (2012

    Heavy-Fermion Instability in Double-Degenerate Plasmas

    Full text link
    In this work we study the propagations of normal frequency modes for quantum hydrodynamic (QHD) waves in the linear limit and introduce a new kind of instability in a double-degenerate plasma. Three different regimes, namely, low, intermediate and high magnetic field strengths are considered which span the applicability of the work to a wide variety of environments. Distinct behavior is observed for different regimes, for instance, in the laboratory-scale field regime no frequency-mode instability occurs unlike those of intermediate and high magnetic-field strength regimes. It is also found that the instability of this kind is due to the heavy-fermions which appear below a critical effective-mass parameter (ÎĽcr=3\mu_{cr}=\sqrt{3}) and that the responses of the two (lower and upper frequency) modes to fractional effective-mass change in different effective-mass parameter ranges (below and above the critical value) are quite opposite to each other. It is shown that, the heavy-fermion instability due to extremely high magnetic field such as that encountered for a neutron-star crust can lead to confinement of stable propagations in both lower and upper frequency modes to the magnetic poles. Current study can have important implications for linear wave dynamics in both laboratory and astrophysical environments possessing high magnetic fields

    Parameter dependence of magnetized CMB observables

    Full text link
    Pre-decoupling magnetic fields affect the scalar modes of the geometry and produce observable effects which can be constrained also through the use of current (as opposed to forthcoming) data stemming from the Cosmic Microwave Background observations. The dependence of the temperature and polarization angular power spectra upon the parameters of an ambient magnetic field is encoded in the scaling properties of a set of basic integrals whose derivation is simplified in the limit of small angular scales. The magnetically-induced distortions patterns of the relevant observables can be computed analytically by employing scaling considerations which are corroborated by numerical results.Comment: 48 pages, 11 figures; corrected minor typos; discussions added; to appear in Physical Revie

    New techniques for diffusing-wave spectroscopy

    Get PDF
    We present two new types of measurements that can be made with diffusing-wave spectroscopy (DWS), a form of dynamic light scattering that applies in limit of strong multiple scattering. The first application is to measure the frequency-dependent linear viscoelastic moduli of complex fluids using light scattering. This is accomplished by measuring the mean square displacement of probe particles using DWS. Their response to thermal fluctuations is determined by the fluctuation-dissipation relation, and is controlled by the response of the surrounding complex fluid. This response can be described in terms of a memory function, which is directly related to the complex elastic modulus of the system. Thus by measuring the mean square displacement, we are able to determine the frequency dependent modulus. The second application is the measurement of shape fluctuations of scattering particles. This is achieved by generalizing the theory for DWS to incorporate the effects if amplitude fluctuations in the scattering intensity of the particles. We apply this new method to study the thermally induced fluctuations in the shape of spherical emulsion droplets whose geometry is controlled by surface tension

    Space-filter techniques for quasi-neutral hybrid-kinetic models

    Get PDF
    The space-filter approach has proved a fundamental tool in studying turbulence in neutral fluids, providing the ability to analyze scale-to-scale energy transfer in configuration space. It is well known that turbulence in plasma presents challenges different from neutral fluids, especially when the scale of interests include kinetic effects. The space-filter approach is still largely unexplored for kinetic plasma. Here we derive the space-filtered (or, equivalently "coarse-grained") equations in configuration space for a quasi-neutral hybrid-kinetic plasma model, in which ions are fully kinetic and electrons are a neutralizing fluid. Different models and closures for the electron fluid are considered, including finite electron-inertia effects and full electrons' pressure-tensor dynamics. Implications for the cascade of turbulent fluctuations in real space depending on different approximations are discussed.Comment: 43 pages, 2 figure

    Physical applications of second-order linear differential equations that admit polynomial solutions

    Full text link
    Conditions are given for the second-order linear differential equation P3 y" + P2 y'- P1 y = 0 to have polynomial solutions, where Pn is a polynomial of degree n. Several application of these results to Schroedinger's equation are discussed. Conditions under which the confluent, biconfluent, and the general Heun equation yield polynomial solutions are explicitly given. Some new classes of exactly solvable differential equation are also discussed. The results of this work are expressed in such way as to allow direct use, without preliminary analysis.Comment: 13 pages, no figure
    • …
    corecore